Tratamento Nutricional do doente com Acidente Vascular Cerebral na sua fase aguda

Monografia

Autor: Cidália Almeida
Orientado por: Dr.ª Sandra Faria

Porto, 2007
Dedicatória

À minha querida avó Alice…

O tema da minha monografia foi escolhido a pensar em si, na ânsia de poder cuidar melhor da minha pequenina. Infelizmente, o tempo correu mais veloz do que esperávamos e hoje não a tenho ao meu lado com os miminhos e as palavras de apoio a que me habituou, mas tenho a certeza que, onde quer que esteja, continua a olhar para mim…

Um beijo muito especial da neta que a adora e que nunca se esquecerá de si.
Agradecimentos

À minha família maravilhosa pelo amor, dedicação, apoio e compreensão em todos os momentos, especialmente pelo ânimo transmitido durante a elaboração desta monografia.

À Dr.ª Sandra Faria, minha orientadora pela ajuda na escolha e desenvolvimento do tema.

À Dr.ª Marta pela sua ajuda na pesquisa bibliográfica e resposta pronta às minhas dúvidas.

Ao meu doce namorado, Bruno Pereira pela sua preciosa ajuda, compreensão e infinito amor.

A todos aqueles que de alguma forma contribuíram para a concretização deste trabalho.
Índice

Dedicatória .. 3
Agradecimentos .. 4
Lista de Abreviaturas... 6
Resumo em Português e Inglês ... 7
Palavras-Chave em Português e Inglês ... 8
Introdução .. 9
Epidemiologia... 10
Definição, Classificação e Patofisiologia do AVC ... 11
Factores de risco do AVC .. 13
Tratamento Nutricional do doente após o AVC .. 16
 A. Estado nutricional do doente ... 16
 B. Determinação das necessidades nutricionais do doente 19
 C. A Disfagia .. 22
 D. Como e quando alimentar o doente?... 28
 E. Suplementação nutricional .. 38
Análise Crítica .. 42
Conclusão ... 44
Referências bibliográficas .. 45
Lista de abreviaturas

AVC – Acidente Vascular Cerebral
MUST – Malnutrition Universal Screening Tool
NRS-2002 – Nutritional Risk Screening
MNA – Mini Nutritional Assessment
cP - centipoise
ADA – American Dietetic Association
SNG – sonda nasogástrica
PEG – percutaneous endoscopic gastrostomy
ESPEN – European Society for Clinical Nutrition and Metabolism
DRI – Dietary Reference Intakes
DPOC – doença pulmonar obstrutiva crónica
IC – Intervalo de Confiança
OR – Odds Ratio
Resumo

O Acidente Vascular Cerebral (AVC) é a primeira causa de morte em Portugal, sendo responsável por uma elevada morbidade nos sobreviventes.

O tratamento nutricional do AVC, na sua fase aguda, implica uma avaliação do estado nutricional e situação clínica do doente. O segundo passo será a determinação do momento e via de administração adequados à nutrição do doente. A alimentação por via oral será sempre a mais desejada. Porém, a disfagia após o AVC é frequente e associa-se a deterioração do estado nutricional. Nestas situações dever-se-á avaliar a adequação de uma dieta de textura modificada, ou quando esta é insuficiente ou impossível de praticar, a administração de alimentação entérica, por sonda. A suplementação nutricional deverá ser individualmente considerada.

Palavras-chave

Acidente vascular cerebral, desnutrição, dieta textura modificada, disfagia, gastrostomia endoscópica percutânea, sonda nasogástrica, suplementação nutricional

Abstract

Stroke is the first cause of death in Portugal and is associated with a great morbidity.

The nutritional screening and assessment after stroke is helpful to prevent or minimize malnutrition among survivors. The next step is to establish how and when to start feeding. Oral feeding is the preferable route. However, swallowing disorders are common after stroke and may deteriorate nutritional status. In the
dysphagic patient, a texture modified diet may be a solution, but sometimes it is impossible or nutritionally inadequate and enteral tube feeding is required. Nutritional supplements should be evaluated according to patient’s nutritional status.

Key Words:

Dysphagia, malnutrition, nasogastric tube feeding, nutritional supplementation, percutaneous endoscopic gastrostomy, stroke, texture modified diet
Introdução

O AVC é a primeira causa de morte em Portugal. Apresenta elevada mortalidade e morbidade. Na sua etiologia, a alimentação apresenta um papel de relevo e são vários os factores alimentares associados a um risco aumentado da ocorrência da patologia. Deste modo, a generalidade dos trabalhos realizados sobre este tema aborda a alimentação como factor preventivo do AVC. Contudo, e apesar da importância da prevenção neste tipo de patologia, o tratamento, nomeadamente o nutricional, ganha especial relevo dada a elevada prevalência do AVC, no nosso país.

Este trabalho tem como objectivo analisar as várias metodologias seguidas no tratamento nutricional do doente após o AVC, na sua fase aguda, de modo a uma optimização da sua recuperação.
Epidemiologia

O AVC é a terceira causa de morte, depois das doenças cardiovasculares e cancro, nos países industrializados. Na Europa, anualmente, a mortalidade ronda os 63.5 a 273.4/100 000 habitantes. O AVC é a causa mais importante de morbilidade e incapacidade a longo prazo na Europa. A incidência de AVC entre os países Europeus é estimada em 100 a 200 novos casos por 100 000 habitantes, anualmente. Em Portugal, o AVC é a primeira causa de morte. \(^{(1,2)}\)

A prevalência de AVC em Portugal foi estimada no concelho de Coimbra em 8% para indivíduos com mais de 50 anos (sexo masculino: 10.2%, sexo feminino: 6.6%).\(^{(1)}\)

Relativamente à incidência, calculada a partir do primeiro evento vascular cerebral na vida de um indivíduo, foi estimada por estudos populacionais em duas áreas geográficas no norte de Portugal, entre 1999 e 2000. A incidência (por 100 000 habitantes) nas áreas rurais foi de 202 (IC 95%, 169-234) e nas áreas urbanas foi de 173 (IC 95%, 153-192), após ajuste para idade e sexo para a população padrão europeia. \(^{(1)}\)

No concelho de Torres Vedras no ano de 2000, a mesma estimativa foi de 217 (IC 95%, 178-257). Em ambos os casos, a taxa de incidência de AVC é superior no sexo masculino. \(^{(1)}\)
Definição, Classificação e Patofisiologia do AVC

A Organização Mundial de Saúde definiu o AVC como um síndrome clínico caracterizado pelo rápido desenvolvimento de sintomas e/ou sinais focais e, algumas vezes, globais (nos pacientes em coma) de disfunção neurológica, com uma duração dos sintomas superior a 24h podendo resultar na morte, sem outra causa aparente que não a origem vascular. \(^{(1, 3)}\)

Existem 2 tipos principais de AVC: isquémico e hemorrágico, sendo o primeiro responsável por cerca de 75-80% dos casos, embora a taxa de mortalidade seja superior no segundo. \(^{(1-4)}\)

O AVC isquémico geralmente resulta da oclusão de uma artéria cerebral ou, menos frequentemente, da redução da perfusão distal a uma estenose severa. O AVC isquémico pode ser causado por trombose ou embolia cerebral. A trombose cerebral deve-se na maioria dos casos, a um processo aterosclerótico nas grandes artérias cerebrais (carótida, cerebral média, basilar). Este inicia-se com a agressão endotelial e inflamação, levando à formação de uma placa. Esta torna-se mais espessa e fibrosa, com perda de células musculares, podendo obstruir parcial ou totalmente o lúmen arterial. As plaquetas aderem a esta placa, libertando factores que iniciam a cascata de coagulação, promovendo a formação de um coágulo ou um trombo que ocluem um vaso cerebral, impedindo o fluxo sanguíneo. A embolia cerebral, resulta, geralmente da fragmentação de um coágulo (êmbolo), proveniente de vasos ateroscleróticos, ou de um êmbolo de origem cardíaca que se desloca na corrente sanguínea e se aloja num vaso cerebral. O enfarte lacunar é responsável por cerca de 20% do total de AVC’s e
deve-se à oclusão, por um coágulo de pequenas artérias perfurantes. A pressão arterial elevada é o principal factor de risco. (3, 5, 6)

Com a diminuição da irrigação cerebral e consequente diminuição do aporte de oxigénio e nutrientes essenciais, a função neuronal altera-se. Numa primeira fase, a diminuição do fluxo sanguíneo para cerca de 20ml de sangue/100g cérebro/minuto provoca a perda da função eléctrica neuronal. Esta fase pode ser reversível (penumbra isquémica). Os danos irreversíveis ocorrem quando o fluxo sanguíneo diminui para valores inferiores a 10ml/100g cérebro/minuto. Abaixo deste nível, o metabolismo mitocondrial aeróbio não é viável e é substituído pelo metabolismo anaeróbio que rapidamente conduz a acidose metabólica. Consequentemente, a homeostase iónica é alterada, resultando na saída de potássio e entrada de sódio e água para a célula, provocando edema citotóxico. O cálcio também entra para a célula exacerbando a falha mitocondrial. A perda da homeostase iónica celular conduz à morte neuronal. (5-7)

O AVC hemorrágico ocorre pela ruptura de um vaso cerebral. Pode ser classificado como hemorragia intracerebral ou subaracnóide. Na primeira, a hemorragia ocorre no parênquima cerebral e na segunda, no espaço meníngeo envolvente. Na hemorragia intracerebral para além do tecido cerebral afectado pela hemorragia, a área circundante pode ser danificada pela pressão produzida pelo hematoma, possibilitando um aumento generalizado da pressão intracraniana. Este tipo de hemorragia não traumática resulta, normalmente de hipertensão arterial. A hemorragia cerebral traumática pode dever-se a um fluxo sanguíneo excessivo, ruptura de um aneurisma ou malformação arteriovenosa. A hemorragia subaracnóide geralmente ocorre após a ruptura de um aneurisma no Círculo de Willis. (3, 5, 6)
Factores de risco do AVC

Os factores de risco do AVC são numerosos. Relativamente aos factores de risco modificáveis bem documentados destacam-se: hipertensão arterial, tabagismo, Diabetes Mellitus, dislipidêmia, fibrilhação auricular, estenose carotídea, acidente isquémico transitório ou AVC prévio, doença das células falciformes, álcool, obesidade e distribuição abdominal da gordura corporal, sedentarismo, terapia hormonal de substituição, nutrição e dieta\(^{(1)}\).

Abordarei neste trabalho apenas os factores de risco relacionados com a nutrição e dieta. Estes podem influenciar o risco de AVC, pela sua relação com alguns factores de risco vascular importantes como a hipertensão arterial, diabetes e dislipidêmia\(^{(1)}\).

No que se refere ao consumo alimentar, a ingestão de frutas e vegetais pode diminuir o risco de AVC em cerca de 11% por cada porção diária adicional de frutas na dieta (RR 0.89; IC 95%, 0.85-0.93), 5% por cada porção diária de fruta e vegetais (RR 0.95; IC 95%, 0.92-0.97) e 3% por cada porção de vegetais (RR 0.97; IC, 0.92-1.02)\(^{(1)}\).

Outros alimentos demonstraram benefícios na prevenção do AVC, nomeadamente os cereais integrais e fibras ou o peixe, quando consumido semanalmente (RR 0.66; IC 95%, 0.51-0.87)\(^{(1, 8)}\).

A ingestão de chocolate e chá preto ou verde (igual ou superior a 150g chá/mês), pela sua riqueza em flavonóides apresenta um efeito protector (OR 0.56; IC 95%, 0.36-0.89)\(^{(1)}\).

Relativamente ao consumo de bebidas alcoólicas, a maioria dos estudos aponta um efeito protector para um consumo moderado (<12g/dia), o qual demonstrou
uma redução do risco de AVC isquémico (RR 0.8; IC 95%, 0.67-0.96)\(^{(1)}\). No “Cardiovascular Health Study”, os investigadores concluíram que um consumo entre 1 a 6 bebidas por semana está associado a uma redução de 20% do risco de AVC isquémico. Pelo contrário, uma ingestão superior a 6 bebidas por semana associa-se a um risco aumentado de AVC\(^{(9)}\). Num outro estudo, “The Northern Manhattan Study”, um consumo moderado (maior ou igual a 1 bebida/mês e menor ou igual a 2 bebidas/dia) pode atingir uma protecção de 50% sobre o risco de AVC isquémico, comparativamente a indivíduos que não ingeriram bebidas alcoólicas no último ano (0.67; 95% IC, 0.46-0.99)\(^{(10, 11)}\). Contudo, nenhum estudo mostrou qualquer benefício em recomendar a ingestão de álcool para não bebedores. Embora os estudos demonstrem uma relação entre o consumo de álcool e AVC, não se pode afirmar que existe causalidade entre ambos\(^{(11)}\).

Relativamente à ingestão de minerais, o consumo de dietas pobres em sódio e ricas em potássio, magnésio ou cálcio, proveniente de produtos lácteos com baixo teor lipídico, tem um efeito protector para o AVC. Este efeito deve-se ao facto destes minerais afectarem favoravelmente alguns dos factores de risco do AVC, nomeadamente, a pressão arterial, insulinoresistência, agregação plaquetária e o processo aterosclerótico\(^{(1, 12)}\). No primeiro estudo realizado sobre a relação entre o consumo de produtos lácteos e o AVC, Abbott \(\text{et al}\) observaram que indivíduos do sexo masculino, com idades compreendidas entre 55 e 68 anos que não bebiam leite, no início do estudo, apresentavam um risco de AVC tromboembólico duas vezes superior, comparativamente àqueles que consumiam duas ou mais porções de 240ml de leite, diariamente\(^{(12)}\). Num outro estudo, Iso \(\text{et al}\) verificaram que a ingestão de cálcio, potássio e magnésio, 3 minerais abundantes no leite, se associava à diminuição do risco relativo do AVC isquémico, mas não com outros
tipos de AVC. O aumento do risco limitou-se ao grupo com uma ingestão de cálcio inferior a 600mg/dia\(^{(12)}\). No “JACC Study”, a ingestão de cálcio, proveniente do leite, iogurte e queijo, estava associada com a redução do risco de mortalidade por AVC, hemorrágico e isquémico, entre homens e mulheres japonesas\(^{(13)}\).

A ingestão diminuída de ácidos gordos saturados, trans (hidrogenadas naturais e industriais) e colesterol, bem como um consumo privilegiado de ácidos gordos polinsaturados, não hidrogenados e ácidos gordos n-3 exercem um efeito protector sobre o AVC\(^{(1)}\). Paradoxalmente, Iso et al, na coorte “Nurses and Health Study”, encontraram uma associação inversa entre a ingestão de proteína animal e o risco de hemorragia intraparenquimal (RR 0.32, IC 95%, 0.10-1.00; P=0.04). Verificaram ainda que um baixo consumo de gordura saturada se associava a um risco aumentado de AVC hemorrágico, especialmente em mulheres hipertensas, o que poderia explicar o elevado risco de AVC hemorrágico, em populações com baixa ingestão de proteína e gordura animal, como acontece na população Asiática\(^{(12)}\).

O papel do colesterol como factor causal do AVC permanece incerto\(^{(14)}\). Embora seja considerado como um factor de risco para a doença cardiovascular, não o é para o AVC. A maioria dos estudos não encontra evidências para o considerar como factor de risco ou as associações são fracas\(^{(15)}\). No “Eurostroke Study” o colesterol total não estava associado com um aumento do risco de qualquer tipo de AVC (OR 0.98; IC 95%, 0.88-1.09). Relativamente ao colesterol HDL verificaram-se associações diferentes entre homens e mulheres: no homem parece existir uma tendência para a redução do risco de AVC com o aumento do colesterol HDL (OR 0.68; IC 95%, 0.40-1.16) e na mulher associa-se a um
aumento do risco de AVC não fatal (OR 2.46; IC 95%, 1.20-5.04) em fumadoras e não fumadoras\(^{(16)}\).

Tratamento Nutricional do doente após o AVC

A desnutrição é comum em doentes após AVC e, geralmente, agrava-se durante a hospitalização. Apresenta uma prevalência de 16% no momento da admissão hospitalar que aumenta para 22% a 35% em cerca de 2 semanas e 50% em 2 a 3 meses\(^{(17)}\). Embora a prevalência de desnutrição seja variável nos inúmeros estudos realizados (diferenças na selecção de doentes, definição de desnutrição, método e momento de avaliação), está independentemente associada a um aumento da mortalidade após 6 meses\(^{(18, 19)}\). Relaciona-se igualmente com uma menor recuperação funcional, maiores períodos de hospitalização e aumento de complicações\(^{(17, 20-22)}\). O hipercatabolismo e elevado consumo visceral, como resposta ao stress nestes doentes, podem ser responsáveis pela desnutrição, reduzem a imunidade celular, contribuindo para um pior prognóstico, após o AVC severo\(^{(23, 24)}\).

A avaliação do estado nutricional nestes doentes nem sempre é fácil. A história alimentar e peso corporal habitual podem não estar disponíveis se o doente tem problemas de comunicação. Outras fontes de informação podem ser escassas, no caso do doente viver sozinho. A avaliação do peso e altura poderá ser impossível se o doente estiver imobilizado. Equipamento especial para avaliação destes parâmetros não existe em muitas unidades. Medidas antropométricas mais
complexas como o perímetro do braço ou pregas tricipitais necessitam de lipocalibrador e profissionais treinados neste tipo de medição. Estas medidas antropométricas podem também ser alteradas devido à paralisia do braço após o AVC. Parâmetros laboratoriais como a hemoglobina, proteínas plasmáticas, albumina e transferrina estão facilmente disponíveis. Contudo, os seus resultados devem ser interpretados com precaução, uma vez que níveis diminuídos podem ocorrer em várias condições (hipercatabolismo, por exemplo) e não ser, necessariamente, sinónimos de mau estado nutricional. Medidas mais específicas como estimativas de vitaminas, impedância bioeléctrica são utilizadas na investigação, mas não na prática clínica diária. Segundo as recomendações da “European Society for Clinical Nutrition and Metabolism” (ESPEN), a avaliação do risco nutricional deve ser realizada no momento da admissão hospitalar (até 48h após) e deve incluir medição do peso e altura para o cálculo do IMC\(^{(21, 25-27)}\). Nos casos em que esta medição é impossível, indicam a medição do perímetro do braço, relacionando-a em percentis com a população específica, idade e sexo. Recomendam ainda a avaliação da perda recente de peso involuntária (superior a 5% em 3 meses é geralmente aceite como significativa) e potencial agravamento do estado nutricional, pela perda de apetite ou redução da ingestão alimentar, ou por outras situações relacionadas com a patologia do doente, como a disfagia. Embora nenhuma ferramenta específica tenha sido desenvolvida para avaliar o risco nutricional do doente após o AVC, a ESPEN refere a utilização do MUST e NRS-2002 para adultos hospitalizados e do MNA, mais adequado para doentes idosos. Para uma avaliação mais detalhada do estado nutricional recomenda cruzamento dos dados anteriores com parâmetros laboratoriais, informação
clínica e ingestão alimentar do doente. O estado nutricional do doente deverá ser monitorizado com a regularidade adequada\(^{(27)}\).

Dennis \textit{et al} analisaram os dados dos participantes do “FOOD (Feed Or Ordinary Diet) Trial” e verificaram que dos 3012 doentes, 9\% estavam desnutridos e 16\% apresentavam sobrepeso. Os doentes desnutridos, em geral, eram mais velhos e viviam sozinhos. Os autores verificaram que os doentes desnutridos apresentavam maior incidência de pneumonia, outras infecções e hemorragia gastrointestinal. Os doentes com estado nutricional normal desenvolveram menos úlceras de pressão, comparativamente àqueles desnutridos ou com sobrepeso. Os doentes desnutridos apresentavam um maior risco de morte, significativamente estatístico, relativamente aos doentes com estado nutricional normal – OR de 2.32 (95\% IC, 1.78-3.02). Após ajuste para a idade, função anterior ao AVC, condições de vida e severidade da doença (incluindo capacidade de deglutição), a relação enfraquece, mas mantém-se significativa (P=0.0001) – OR de 1.82 (95\% IC, 1.34-2.47). Os doentes desnutridos apresentavam maior risco de morte ou dependência, comparativamente àqueles com estado nutricional normal (OR=2.08; 95\% IC, 1.50-2.88). Os doentes obesos não são significativamente diferentes dos doentes com peso normal, apresentando um OR de 0.91 (95\% IC, 0.71-1.17), após ajuste para outras variáveis. Concluíram, deste modo, que o estado nutricional no momento da admissão está independentemente associado com o prognóstico clínico\(^{(19)}\).
B. Determinação das necessidades nutricionais do doente

As necessidades energéticas totais do doente deveriam, idealmente ser calculadas em função das necessidades energéticas basais, determinadas pela calorimetria indirecta\(^{(28)}\). Contudo, este método não se encontra facilmente disponível na prática clínica e por isso, a utilização de fórmulas, como a equação de Harris Benedict, permite estimar as necessidades energéticas basais dos doentes. Este cálculo é influenciado por vários factores como o peso, sexo, altura e idade. Contudo, Allan \textit{et al} questionam a utilização desta equação em doentes severamente doentes ou desnutridos, uma vez que o seu cálculo foi realizado numa população saudável e recomendam, por esta razão a utilização de métodos directos para avaliação do gasto energético basal\(^{(29)}\). Para ultrapassar esta situação e dado que a situação clínica do doente pode aumentar as suas necessidades energéticas, esta deverá ser considerada na avaliação, adicionando-se à equação de Harris Benedict o factor clínico adequado\(^{(30, 31)}\). Porém, Finestone \textit{et al} avaliaram o metabolismo basal de doentes, durante 3 meses após o AVC e verificaram que estes não apresentavam hipercatabolismo, qualquer que fosse o tipo de AVC. Observaram contudo, que a equação de Harris Benedict pode subestimar em cerca de 10% o metabolismo basal, pelo que recomendam a calorimetria indirecta como método de eleição\(^{(28)}\).

Em geral, as recomendações indicam que um aporte energético de 25 a 35 Kcal por quilograma de peso e por dia é adequado para os doentes, excepto em situações de sobrepeso ou obesidade em que poderá ser ligeiramente inferior. Relativamente às necessidades proteicas é recomendada uma ingestão de 0.8 a 1.5 g de proteínas por quilograma de peso corporal e por dia (0.13 a 0.24 g de
azoto por quilograma de peso e por dia\(^{(32, 33)}\). Para doentes normoponderais a ingestão de 1 g de proteína por quilograma de peso é adequada. A ingestão superior (1.5g) é recomendada em casos de stress metabólico ou hipercaebolismo\(^{(32-34)}\).

A energia não proteica deve ser fornecida sob a forma de hidratos de carbono, num total de 50 a 55% do valor energético total diário.

Os lípidos deverão contribuir com cerca de 25 a 35% para o valor energético total diário.

Relativamente à ingestão de vitaminas e minerais devem ser satisfeitas 100% das "Dietary Reference Intakes" (DRI), calculadas para indivíduos saudáveis e avaliadas situações específicas de carência. No caso da alimentação entérica, as fórmulas utilizadas apresentam, geralmente, uma quantidade suficiente destes nutrientes, desde que o aporte energético do doente seja adequado. No entanto, é importante avaliar défices nutricionais existentes, necessidades acrescidas ou perdas aumentadas induzidas pela doença.

A água é essencial para a manutenção de um balanço hídrico adequado e devem ser fornecidos diariamente, 30 a 50 ml por quilograma de peso corporal. As necessidades de fluidos devem avaliar factores como a idade do doente, patologia e terapêutica médica. As necessidades aumentam em consequência de febre, diarreia, vômitos, transpiração excessiva, drenagem fistular e durante a administração de fórmulas hiperosmolares\(^{(35)}\).

No caso de doentes severamente doentes e com necessidade de suporte nutricional, este deve ser iniciado com apenas 50% das necessidades energéticas e proteicas estimadas. Este fornecimento deverá aumentar gradualmente nas 24h a 48h seguintes, dependendo da tolerância metabólica e gastrointestinal do
doente. Especial atenção deverá ser dada à adequada ingestão de fluidos bem como ao aporte vitamínico e mineral, nestes doentes(32, 33).

C. A Disfagia

A disfagia é definida como qualquer dificuldade na deglutição e está presente em cerca de metade dos doentes após o AVC(18). Ocorre quando existe disfunção neuromuscular, resultando em fraqueza, paralisia e/ou perda sensitiva nos músculos associados à deglutição. Esta normalmente apresenta 4 fases: preparatória oral, oral, faríngea e esofágica. A primeira fase consiste na mastigação dos alimentos e formação do bolo. Na fase oral, o bolo movimenta-se em direcção à faringe. Na terceira fase, o bolo na faringe estimula a deglutição e passa para o esófago. As cordas vocais, laringe e epiglote coordenam-se para prevenir a aspiração para a traqueia. Na última fase ocorrem movimentos peristálticos que levam o bolo alimentar através do esófago até ao estômago. O AVC geralmente afecta as 3 primeiras fases, interrompendo o controlo voluntário da mastigação e do movimento dos alimentos na boca ou atrasando o reflexo faríngeo(35, 36).

Durante a reabilitação, após o AVC, a disfagia diminui de 47% à 2.ª – 3.ª semanas para 17% aos 2 – 4 meses(35). Os estudos demonstram que a severidade do AVC e a predominância de lesões no córtex esquerdo prolongam a disfagia(38). A disfagia tem sido associada com a perda de peso e desnutrição, desidratação, aspiração e pneumonia(32, 34). Hillel et al recomendam a nutrição entérica (por sonda) em doentes impossibilitados de ingerir alimentos ou fluidos oralmente ou em situações em que essa ingestão é insuficiente ou ainda, se o risco de
aspiração é elevado. Nestas situações, a nutrição entérica dever-se-á manter até à normalização da deglutição ou uma ingestão oral adequada\(^{35, 39}\).

O plano alimentar em doentes disfágicos deve ser altamente individualizado. As refeições devem ser pequenas, mas frequentes, em horário regular e ambiente tranquilo. As características deste tipo de dietas incluem modificação da textura dos alimentos e viscosidade dos fluidos\(^{34, 35, 40, 41}\). Os alimentos podem ser cortados, picados ou com textura de puré e os líquidos poderão ser espessados. Existem várias classificações para as dietas utilizadas em situações de disfagia. A “British Dietetic Association” e o “Royal College of Speech and Language Therapists” desenvolveram recomendações para este tipo de dietas dividindo-as em 5 categorias que progridem do menor para o maior grau de dificuldade de deglutição: categoria A – consistência tipo creme de leite fino, categoria B – consistência tipo creme de leite espesso, categoria C – consistência de mousse, categoria D – húmido e requer alguma mastigação, categoria E – mole, alimentos húmidos\(^{42}\). Outro exemplo é a classificação adoptada pela “American Dietetic Association” (ADA). Esta divide os alimentos sólidos e líquidos, em 3 e 4 níveis, respectivamente com a particularidade de ultrapassar a subjectividade das classificações usuais para alimentos líquidos, pois apresenta os limites de viscosidade para cada categoria (medidos pelo viscosímetro). No que se refere aos alimentos sólidos, o nível 1 (puré) inclui alimentos homogéneos, muito coesos, semelhantes à consistência de pudim e requerem muito pouca capacidade de mastigação. O nível 2 (alimentos alterados mecanicamente) engloba alimentos semi-sólidos, coesos, húmidos e que requerem alguma mastigação. O nível 3 (avançado) inclui alimentos moles que necessitam de maior capacidade de mastigação. Ultrapassada esta fase, o doente inicia uma dieta
hospitalar normal, em que todos os alimentos são permitidos, desde que adequados à sua situação clínica\(^{43}\). As dietas para doente disfágicos devem excluir alimentos crocantes ou com grumos, como tostas, sementes, cereais, bolos ou amêndoas, uma vez que se despedaçam facilmente na cavidade oral, dificultando a deglutição\(^{44}\). Contrariamente, os alimentos frios poderão ser melhor tolerados pelo doente com disfagia\(^{34}\). Relativamente à classificação dos líquidos, no nível 1 encontram-se os líquidos finos (1-50 cP), nível 2 – semelhantes a néctar (51-350 cP), nível 3 – semelhantes a mel (351-1750 cP) e nível 4 – mais espessados (>1750 cP). Sintomas como o atraso da propulsão posterior superior a 1 segundo, deglutição fraccionada, engasgamento, tosse imediata, voz humidificada, pigarro ou tosse tardia, após a ingestão de líquidos ou sólidos são indicativos de disfagia\(^{56}\).

Particular atenção deve ser dada à adequação nutricional das dietas com textura modificada, particularmente, na forma de puré. Brynes \textit{et al} demonstraram que doentes com uma dieta de textura modificada satisfaziam apenas, 45% das suas necessidades energéticas\(^{42}\). Resultados semelhantes foram encontrados por Wright \textit{et al} verificando que os doentes com dietas de textura modificada satisfaziam apenas 40% das suas necessidades energéticas. Relativamente à ingestão proteica, neste estudo 93% dos doentes com dietas de textura modificada não satisfaziam as suas necessidades em comparação com 40% dos doentes com dietas hospitalares normais. Os autores apontam algumas razões para estas diferenças: elevada incidência de dificuldades na alimentação deste grupo de doentes, menos alternativas alimentares, menor palatabilidade dos alimentos, pior aparência e o menor valor energético destas dietas devido à maior diluição para atingir a consistência correcta\(^{32, 42, 45}\). Por outro lado, embora os
autores não tenham avaliado a ingestão vitamínica e mineral referem que se não são alcançadas as necessidades energéticas e proteicas, também é provável que não sejam satisfeitas as suas necessidades vitamínicas e minerais. Algumas directrizes internacionais recomendam a suplementação deste tipo de dietas, para que as necessidades nutricionais do doente sejam satisfeitas. Destaca-se assim, a importância da comunicação entre a equipa multidisciplinar acerca da evolução da capacidade de deglutição do doente, para a progressão da textura da dieta, logo que possível. Germain et al melhoraram as dietas para doentes disfágicos, incluindo nas mesmas purés de frutas, vegetais e sobremesas, inovaram a sua apresentação e avaliaram os seus efeitos no estado nutricional dos doentes, comparativamente a uma dieta para disfagias tradicional. Verificaram um aumento significativo da ingestão energética e de alguns nutrientes (proteínas, lipídos, vitaminas e minerais), no grupo de intervenção. O peso também aumentou significativamente neste grupo. Os autores concluíram, deste modo, que é possível alimentar oralmente doentes disfágicos, satisfazendo as suas necessidades nutricionais. Para isso é fundamental encontrar soluções dietéticas nutritivas, variadas e apelativas. Por outro lado, medidas simples como a substituição do garfo pela colher para alimentos de consistência sólida ou o aumento da superfície das pegas dos cabos dos talheres, podem facilitar a capacidade de alimentação do doente. Relativamente à ingestão de fluidos, os doentes após o AVC apresentam um elevado risco de desidratação, muitas vezes subvalorizado, particularmente naqueles alimentados apenas por via oral. A consistência mais difícil de tolerar oralmente é a de fluidos semelhantes à água, pelo que a administração
parentérica (intravenosa ou subcutânea) ou entérica de fluidos, deve ser considerada(39, 40). A ingestão de fluidos, por via oral, em doentes disfágicos deve contemplar, como referido anteriormente, a adição de substâncias espessantes ou líquidos pré-espessados, uma vez que a sua utilização diminui o tempo do trânsito orofaringeo, criando um bolo mais coeso e fácil de controlar. Líquidos mais viscosos podem promover uma deglutição mais segura, minimizando a possibilidade de aspiração(46). Contudo, a utilização de espessantes (constituídos por amido) aumenta a ingestão glucídica da dieta, devendo por isso ser considerada na elaboração do plano alimentar, sobretudo em doentes diabéticos ou que apresentam hiperiglicemia após o AVC. Alguns autores referem a possibilidade de erro na utilização de fluidos espessados no hospital, dada a sua subjectividade e diferentes definições do mesmo tipo de consistência. Recomendam por isso a utilização de líquidos pré-espessados, de viscosidade controlada que, embora mais dispendiosos, apresentam vantagens no tratamento continuado neste tipo de doentes, nomeadamente pela sua maior aceitação, aumentando a ingestão de líquidos dos doentes, em 100%, em alguns estudos(46-48). Uma outra forma de ultrapassar esta limitação é a referida pela ADA que categoriza os alimentos líquidos de acordo com a sua viscosidade medida pelo viscosímetro, procedimento nem sempre prático em ambiente hospitalar(46, 47).

Macqueen et al investigaram os diferentes tipos de espessantes existentes no mercado Inglês e avaliaram a sua aceitação pelos doentes, uma vez que podem alterar a palatabilidade de alguns alimentos. Sugerem o mesmo tipo de estudo noutros países para estimular a ingestão de líquidos nestes doentes(53)(54).

Vários estudos salientam a importância da formação das equipas de enfermagem e auxiliares da acção médica ou outros intervenientes na alimentação destes
doentes, na área da Nutrição, especificamente da disfagia. Igualmente necessário é a supervisão dos doentes durante as refeições. Os estudos demonstram que quanto maior a formação de todos os profissionais e a supervisão dos doentes, maior o respeito pelas recomendações nutricionais, contribuindo em última análise para um melhor estado nutricional destes doentes(46).

D. Como e quando alimentar o doente?

A alimentação oral apesar de ser o método mais natural e desejável é dificultada pela incapacidade do doente em auto alimentar-se, mastigar ou pela disfagia, que ocorrem frequentemente. Nesta situação, o doente geralmente apresenta pouco apetite e, em alguns casos, hábitos alimentares inadequados que se relacionam com a desnutrição, emagrecimento e perda de força. As dietas com textura modificada e os líquidos com consistência alterada são frequentemente fornecidos ao doente com este tipo de problemas, mas podem constituir alternativas pouco atractivas e contribuir para o mau estado nutricional do doente(32). O suporte nutricional, por sonda, permite uma nutrição adequada e não é afectada pela redução do apetite, disfagia ou incapacidade do doente em auto alimentar-se. A alimentação através da sonda melhora a recuperação física e pode reduzir a incidência de problemas associados à disfagia, como a aspiração(17). Por outro lado, coloca outras potenciais complicações como problemas gastrointestinais (diarreia, náuseas, vômitos), irritações mecânicas relacionadas com a inserção da sonda, problemas respiratórios (aspiração), problemas metabólicos (alterações electrolíticas e hiperiglicemia)(23). No caso dos doentes com AVC, os estudos focam-se quase inteiramente na utilização de
sonda nasogástrica (SNG) e gastrostomia endoscópica percutânea (PEG), como vias de alimentação entérica. Nestes casos, poder-se-á recorrer aos preparados comerciais líquidos existentes no mercado ou à dieta líquida hospitalar. Esta última, embora ainda utilizada na prática clínica não é referida nos estudos apresentados. A nutrição parentérica (em bolsas nutritivas comerciais ou preparadas em farmácia hospitalar) só deve ser utilizada em doentes que não toleram a terapia nutricional por via oral ou entérica, o que no geral, não acontece com estes doentes. (49, 50).

James et al avaliaram a utilização de suporte nutricional na reabilitação de doentes após o AVC. Relativamente ao estado nutricional (avaliação dos níveis de albumina ou pré-albumina no momento da admissão até à alta) observaram uma melhora significativa do estado nutricional, nos doentes que receberam suporte nutricional. Este estava também associado a uma maior recuperação motora e cognitiva em doentes com AVC severo, mas não com AVC moderado(17).

Oh et al avaliaram as diferenças de alguns electrólitos (sódio, potássio) e glicose plasmática, em doentes antes e após alimentação entérica por sonda. Não encontraram diferenças significativas no sódio e potássio plasmáticos, 3 dias após colocação de sonda (utilização do fórmulas isosmolares). A glicose plasmática permanece elevada antes e após alimentação por sonda. A hiperglicemia pode ser induzida nas fases agudas de enfarte cerebral, agravando a isquemia cerebral e está associada a um pior prognóstico (maior risco de morte e pior recuperação funcional)(51-54). Hidalgo et al verificaram a presença de hiperglicemia em 34.5% dos doentes em estudo, alimentados entericamente por sonda e verificaram que esta incidência não se relacionava com o tipo de fórmula utilizada(23).
Neste ponto surge a dúvida sobre quando iniciar a alimentação entérica por sonda e qual a melhor via de administração. O “FOOD Trial” é o maior e mais recente estudo realizado nesta área, com a participação de 18 países e 123 centros de investigação. Engloba 3 ensaios controlados e randomizados. O segundo e terceiro ensaios tentaram responder a estas duas questões. No segundo ensaio os doentes foram separados em dois grupos. Um deles recebeu alimentação por sonda precoce (até 7 dias após o AVC), o outro grupo recebeu apenas fluidos por via parentérica (intravenosa ou subcutânea) e nenhum tipo de nutrição, pelo menos, durante 7 dias. Relativamente à alimentação precoce versus tardia por sonda, não se observaram diferenças estatisticamente significativas no prognóstico dos doentes em ambos os grupos, embora o primeiro grupo demonstrasse uma diminuição do risco absoluto de morte 5.8% (95% IC: -0.8 a 12.5, p=0.09). Contudo, quando os autores analisaram a morte ou má recuperação funcional, a redução do risco absoluto para o grupo da alimentação precoce por sonda é apenas de 1,2% (95% IC: -4.2 a 6.6, p=0.7) (18, 55).

Relativamente à via de administração da nutrição, no “FOOD Trial” os investigadores não encontraram qualquer benefício para a sobrevivência dos doentes, na utilização da PEG. Nos doentes deste grupo verificaram uma taxa de mortalidade de 49%, sendo que no grupo alimentado via SNG, a taxa de mortalidade foi de 48%. Para além destes resultados, os autores concluíram que os grupos com alimentação precoce por sonda e via SNG não estavam associadas com um risco aumentado de pneumonia por aspiração, embora ambas se associassem com um risco 2-3 vezes superior de hemorragia gastrointestinal. (55) Os autores concluíram que, a menos que exista uma forte indicação para atrasar a instituição da alimentação entérica por sonda, o doente
após o AVC deve recebê-la por SNG nos primeiros dias de admissão. Referem ainda que durante as primeiras 2-3 semanas, a alimentação entérica por SNG deverá ser a via preferida, excepto se exista uma forte razão para escolher a alimentação através da PEG (intolerância à SNG, por exemplo)\(^{(18)}\).

Mamun et al compararam a incidência de pneumonia de aspiração e morte em doentes disfágicos alimentados oralmente (dieta de textura modificada) ou por SNG. A incidência de pneumonia de aspiração e morte no primeiro grupo foi mais baixa comparativamente ao grupo alimentado por SNG (10.3% vs 31.2%)\(^{(56)}\).

Num outro estudo prospectivo randomizado, Hamidon et al compararam o estado nutricional em doentes alimentados com SNG e PEG. Verificaram que a albumina plasmática (indicador do estado nutricional) era significativamente mais elevada no grupo alimentado via PEG e significativamente menor no grupo alimentado por SNG, 4 semanas após a intervenção\(^{(37)}\).

Norton et al realizaram um estudo prospectivo randomizado comparando a nutrição por PEG e SNG, em doentes disfágicos, após o AVC. Verificaram que a mortalidade às 6 semanas era significativamente menor no grupo alimentado via PEG, com 2 mortes (12%) comparativamente a 8 mortes (57%) observadas no grupo alimentado via SNG (P<0.05). Para explicar estes resultados, os autores propuseram que os doentes com a PEG provavelmente receberam a quantidade total da nutrição prescrita e evidenciaram uma maior recuperação, estatisticamente significativa, do estado nutricional, bem como uma redução do tempo de internamento às 6 semanas. Relativamente ao estado nutricional, os doentes no grupo PEG mostraram um aumento médio de 3g/L na albumina plasmática, comparativamente ao grupo com SNG com uma redução média de aproximadamente 10g/L. Por outro lado, os doentes alimentados por SNG
apresentaram um risco elevado de aspiração pulmonar. Os autores concluíram que a alimentação por PEG é mais adequada para doentes disfágicos após o AVC\(^{(57)}\). Dwolatzky \textit{et al} obtiveram resultados similares, observando uma sobrevivência significativamente maior em doentes com PEG, comparativamente a SNG, sendo a primeira, o método sugerido pelos autores para a alimentação de doentes idosos disfágicos a longo prazo\(^{(37)}\). Em sentido contrário Abuksis \textit{et al} demonstraram que a utilização de SNG até 30 dias após o AVC e colocação de PEG, apenas após este período pode prevenir a mortalidade e alcançar o principal objectivo de uma alimentação por PEG: nutrir o doente, a longo termo\(^{(58)}\).

Bath \textit{et al} fizeram uma revisão dos artigos publicados até Março de 1999, comparando a PEG e SNG. Concluíram que a alimentação por PEG apresenta uma redução da fatalidade (Peto OR, 0.28; 95% IC, 0.09-0.89), menos falhas no tratamento (OR, 0.10; 95% IC, 0.02-0.52) e melhora o estado nutricional, avaliado pelo peso (+4.1 Kg, 95% IC -4.3 a +12.5), circunferência muscular do braço (+2.2 cm, 95% IC -0.5 a +4.9) e albumina plasmática (+7.0 g/L, 95% IC +4.9 a 9.1)\(^{(59)}\). Num estudo prospectivo com doentes alimentados por PEG, Figueiredo \textit{et al} verificaram que em metade dos casos, a inserção da sonda foi estabelecida demasiado tarde. Obtiveram uma mortalidade de 6.5% aos 30 dias, 17.3% aos 90 dias e 33.9% ao fim de 1 ano. Concluíram que a introdução da PEG é um procedimento fácil e seguro, embora muitas vezes seja requerido tardiamente\(^{(60)}\).

Para avaliar mais eficazmente a necessidade de PEG, Wilkinson \textit{et al} tentaram identificar, retrospectivamente, as variáveis referentes ao doente que levavam à prescrição de alimentação entérica, nomeadamente de PEG. Demonstraram que a intolerância a alimentos com consistência de nível 2 (consistência de iogurte) 7
dias após o AVC era preditiva de disfagia persistente ao dia 28. A intolerância ao nível 3 (consistência de pudim) ao dia 7 ou a dietas de textura mole 7 a 21 dias após o AVC eram preditivos da inserção de PEG, ao fim de 1 ano. Consideram, deste modo, que a alimentação por PEG deve ser ponderada se o doente não tolera fluidos de viscosidade modificada ou alimentos sólidos com textura de puré, 14 dias após o AVC(61, 62).

Relativamente aos efeitos de uma alimentação a longo termo através da PEG, Kirchgatterer et al realizaram um estudo em que seguiram os doentes disfágos, alimentados desta forma, durante 5 anos (tempo médio de seguimento noutros estudos é de 2-3 anos). A mortalidade aos 30 dias foi de 20.2%, semelhante à encontrada em outros estudos (8-26%) (63, 64). Os resultados mostraram uma função excelente a longo prazo da PEG com 85% dos doentes sem dificuldades técnicas ou de interrupção da alimentação entérica. A remoção da PEG apenas foi possível no grupo de doentes com idade inferior a 75 anos. Os doentes mais velhos nunca recuperaram a capacidade de deglutir quantidades adequadas de alimentos sólidos ou líquidos. Doentes com idade inferior a 75 anos apresentaram taxas de sobrevivência de 62%, 56% e 44%, aos 2, 3 e 5 anos, respectivamente, após inserção da PEG. Quanto aos doentes mais velhos (idade igual ou superior a 75 anos), mostraram pior prognóstico, com taxas de sobrevivência aos 2 e 3 anos de 32% e 25%, respectivamente, justificando contudo, a inserção de PEG neste grupo. Ao fim de 5 anos, apenas 16% dos doentes mais velhos se encontravam vivos (65). Naik et al demonstraram que a idade inferior a 65 anos se associava significativamente à recuperação da alimentação oral, com consequente remoção da PEG (66). Varnier et al confirmaram a segurança da
alimentação a longo prazo através de PEG, relativamente a mortalidade e complicações associadas\(^{63}\).

James A. \textit{et al} estudaram, através de uma análise retrospectiva, os efeitos a longo prazo da alimentação via PEG, na sobrevivência, complicações, dependência e recuperação da deglutição, em doentes disfágicos após o AVC. Verificaram que o tempo médio de sobrevivência após inserção de PEG foi de 305 dias, com 77% dos doentes vivos ao fim de 1 mês, 62.5% aos 3 meses, 54% aos 6 meses e 47% ao fim de 1 ano. Relativamente à disfagia, a informação só estava disponível para 113 doentes. Destes, 57% morreram sem recuperar a deglutição, 29% recuperaram e a PEG foi removida, 4% recuperaram, mas continuaram com suplementos de fluidos ou alimentares via PEG. Analisaram ainda a duração da alimentação via PEG (até recuperação da deglutição ou morte), conhecida em 120 doentes. Verificaram que nos doentes cuja PEG foi precocemente introduzida (até 2 semanas após o AVC) a duração foi, em média, de 52 dias, comparativamente a uma média de 127 dias para os doentes com introdução da PEG após 2 semanas. No que se refere às complicações a longo prazo (observadas num total de 77.4 anos), observadas nestes doentes, a pneumonia de aspiração foi a mais frequente (18%), seguindo-se a infecção do local de inserção da PEG (17%) e obstrução da sonda (9.5%). Os autores concluíram que em doentes disfágicos, após o AVC, a introdução de PEG precoce, até às 2 semanas pode ser desejável. A sobrevivência a longo-prazo pode ocorrer e cerca de um terço dos doentes recupera a deglutição, metade dos quais após mais de 6 meses\(^{67}\).

Lizuka \textit{et al} realizaram um estudo retrospectivo emparelhado para comparar a morbilidade, mortalidade e recuperação funcional de doentes disfágicos após
AVC, internados numa unidade de reabilitação e que necessitavam de alimentação via PEG. No grupo de intervenção, um número substancial de doentes recuperou a deglutição, havendo remoção da PEG em 18.1% dos doentes e em 61.7% apenas foi necessária para hidratação oral. Verificaram que os doentes alimentados via PEG apresentaram um risco aumentado de complicações médicas e morte. Contudo, os sobreviventes mostraram uma recuperação funcional similar aos controlos emparelhados\(^{(68)}\).

Para Plonk et al o uso generalizado da PEG pode não ser o mais indicado, uma vez que a sua vantagem sobre a SNG não é clara. Por outro lado, referem que os doentes e familiares são pouco informados pelas equipas médicas, acerca dos benefícios, consequências e alternativas à PEG, opinião que é partilhada por outros investigadores\(^{(69, 70)}\).

As recomendações da ESPEN relativamente à utilização da PEG referem que este método só se justifica quando a ingestão nutricional é qualitativa e quantitativamente inadequada, por um período superior a 2-3 semanas. Contudo, antes da sua colocação dever-se-á reflectir sobre a manutenção ou possível melhora da qualidade de vida do doente, com este procedimento. As recomendações indicam que a inserção da PEG não deve ser uma medida terminal ou simbólica em doentes com prognóstico desfavorável. Nos doentes disfágicos, após o AVC, se necessário, a sua inserção deverá ser o mais precoce possível. Como vantagem, relativamente à SNG, a PEG permite em simultâneo, um treino adequado para a recuperação da deglutição. Contudo, apresenta potenciais complicações como sepsis da parede abdominal, migração ou obstrução da sonda e persistência de refluxo. A PEG deverá ser retirada assim que a ingestão oral seja adequada e possível sem complicações\(^{(27)}\).
Relativamente à SNG, esta é mais adequada para doentes em estado crítico e quando o suporte nutricional é necessário por um curto período de tempo (até 30 dias)\(^{(71)}\). No entanto, em alguns casos pode conduzir a pneumonia de aspiração, devido à microaspiração do conteúdo gástrico, colonização bacteriana da faringe e ulceração da pele, nasofaringe, esófago e cârdia. Os doentes, principalmente quando conscientes, recusam este tipo de alimentação pelo desconforto e aparência inestética\(^{(72)}\).

Segundo as recomendações da Fundação Australiana de Reabilitação do AVC, a utilização de SNG no primeiro mês, após o AVC está associada a um aumento da recuperação funcional, bem como à normalização da alimentação (via oral) 6 meses após o AVC, comparativamente à utilização de PEG, no mesmo período\(^{(40)}\).

Relativamente à sonda nasogástrica, Anderson et al apresentam uma nova técnica, o loop nasal. Este é um procedimento não invasivo, permite alimentação nasogástrica com sucesso e pode evitar a necessidade de inserção da PEG. Geralmente é bem tolerado e previne um dos problemas das sondas nasogástricas, a sua remoção acidental. Por outro lado, confere algum tempo ao doente para que possa recuperar a deglutição, evitando a PEG, sobretudo naqueles com pior prognóstico\(^{(73)}\).

Nakajima M et al investigaram um novo método de alimentação do doente com disfagia, após o AVC – alimentação intermitente por sonda oroesofágica. Para estes autores a alimentação parentérica é desaconselhada em doentes com tractointestinal intacto, uma vez que não consegue um aporte nutricional suficiente e apresenta risco de infecção bacteriana. Por outro lado, o novo método ultrapassa algumas das desvantagens apontadas à alimentação entérica por SNG.
ou PEG. A Alimentação intermitente por sonda oroesofágica foi introduzida em 1988, por Campbell-Taylor et al e é um método ainda pouco utilizado, no qual o tubo de alimentação é inserido, intermitentemente, pela boca até ao esófago. Como uma das vantagens deste método, os autores apontam a rápida alimentação dos doentes. O peristaltismo esofágico que acontece quando o suplemento alimentar é introduzido no esófago, semelhante ao que acontece com a ingestão oral de fluidos, permite uma velocidade de injeção de cerca de 50 ml/minuto. Contudo, é aconselhada precaução devido à possibilidade de refluxo do suplemento para a faringe causada por hérnia do hiato esofágica ou diminuição do peristaltismo esofágico, o que pode acontecer numa primeira fase após o AVC. Outras vantagens apontadas são: menor risco de refluxo gastroesofágico, de colonização bacteriana e ulceração da pele e mucosas; estimulação da cavidade oral e faringe, pela inserção oral da sonda, melhorando a deglutição. Contudo, este método está contra-indicado em doentes incapazes de compreender o seu procedimento, bem como com hérnia do hiato esofágica ou peristaltismo esofágico incompleto. A alimentação intermitente oroesofágica pode ser utilizada em casos de disfagia severa, nas fases aguda e crónica do AVC. Segundo os autores, pode ser uma alternativa à alimentação por SNG na fase aguda do AVC, em doentes com disfagia severa(72).
E. **Suplementação nutricional**

O primeiro ensaio controlado do “FOOD Trial” investigou a relação entre a suplementação proteica-energética e a recuperação após o AVC. Para isso dividiu os doentes cuja capacidade de deglutição permaneceu inalterada, após o AVC, em dois grupos: dieta hospitalar normal ou dieta hospitalar normal complementada com um suplemento nutricional oral (540 KCal e 22.5g de proteínas/dia). Obtiveram um OR de 0.94% (95% IC, 0.78-1.13) para o risco de morte no grupo suplementado e um OR de 1.03 (95% IC, 0.91-1.17) para o risco de morte ou mau prognóstico aos 6 meses. Os investigadores concluíram que a suplementação oral rotineira de doentes não disfágicos, após o AVC pode não justificar-se, uma vez que as diferenças encontradas na mortalidade de doentes suplementados não foram estatisticamente significativas. Contudo, referem que os suplementos nutricionais deverão ser considerados, individualmente, nos doentes em risco nutricional\(^{74, 75}\).

Numa meta-análise relativa à suplementação proteica em idosos realizada por Milne Anne *et al* foram avaliados 55 estudos (9187 participantes). Cerca de metade destes participantes pertenciam ao FOOD Trial, referido anteriormente. Deste modo, a maioria dos participantes eram doentes com AVC (45%) ou eram grupos mistos com várias condições geriátricas (42%). Foram ainda incluídos participantes com fractura da anca (7%), DPOC (5%), cirurgias (1%) e doença cardíaca congestiva (<1%).

Os estudos incluídos nesta revisão forneciam entre 175 Kcal (732 KJ) e 1000 Kcal (4.2 MJ) e entre 10g a 63g de proteínas, diariamente. A maioria dos suplementos incluía vitaminas e minerais. O período de intervenção variava entre 10 dias e 18
meses. A qualidade dos estudos incluídos na revisão era baixa. Apenas 27 dos 55 estudos avaliados atingiram 50% da pontuação máxima de qualidade.

Relativamente à mortalidade, a suplementação nutricional foi associada a uma redução da mesma em 22 estudos (6852 participantes randomizados), com significado estatístico borderline (Peto OR, 0.86; IC, 0.74 – 1.00). Para doentes com hospitalizações por curtos períodos de tempo, a mortalidade não foi estatisticamente reduzida (Peto OR, 0.88; IC, 0.74-1.04), excepto quando os doentes desnutridos eram incluídos (Peto OR, 0.66; IC, 0.49-0.90). Nenhuma evidência sugere alteração na sobrevivência de doentes com AVC, após suplementação oral (Peto OR, 0.92; IC 0.76-1.11).

Verificou-se ainda que doentes hospitalizados, suplementados oralmente apresentaram uma diminuição estatisticamente significativa, de complicações (Peto OR, 0.72; IC, 0.53-0.97), não observada para doentes com cuidados continuados (Peto OR, 0.92; IC, 0.56-1.52) ou em ambulatório (Peto OR, 1.01; IC, 0.63-1.64).

Relativamente aos efeitos adversos, referidos em apenas 6 estudos são apontadas diferenças significativas nos distúrbios gastrointestinais, como náuseas, vômitos e diarreia, nos grupos suplementados (Peto OR, 3.19; IC, 1.83-5.56).

O tempo de internamento dos doentes suplementados não apresenta diferenças estatisticamente significativas, relativamente ao grupo controlo. Contudo, observou-se uma tendência para uma diminuição do tempo de internamento em doentes suplementados, desnutridos (-3.30 dias vs -0.84dia).

Em 14 estudos analisados na revisão, os doentes hospitalizados mostraram um aumento médio de peso de 1.75% (IC, 1.12% - 2.30%). A circunferência muscular
do braço também aumentou em 1.41% (IC, 0.46% - 2.35%), em 6 estudos, nos doentes suplementados no hospital.

Deste modo, os autores concluíram que nenhuma evidência na sua revisão sugere qualquer redução da mortalidade e morbilidade de doentes com estado nutricional normal, quando recebem suplementação proteica-energética. Contudo, os estudos fornecem algumas evidências do aumento da sobrevivência e menos complicações em doentes hospitalizados desnutridos que receberam os suplementos. Consideram assim os autores, à semelhança do FOOD Trial, que a suplementação rotineira apenas deve ser considerada nestes doentes desnutridos e não em doentes com estado nutricional normal(76).

Bath et al na sua revisão não encontraram diminuição significativa da fatalidade em doentes hospitalares suplementados. Referem apenas um aumento significativo da ingestão proteica e energética(59).

As evidências científicas demonstram um rápido aumento na produção de marcadores dos danos oxidativos, imediatamente após o AVC, seguido pelo esgotamento das defesas antioxidantes endógenas, permitindo assim uma maior lesão dos tecidos(77). Chang et al verificaram que os níveis plasmáticos de alfa e beta-caroteno estavam diminuídos e os marcadores inflamatórios aumentados no doente após o AVC, comparativamente a controlos saudáveis. Os níveis destas vitaminas associavam-se negativamente com os marcadores inflamatórios e défice neurológico(78). Ulegaddi et al conduziram vários estudos para avaliar o efeito da suplementação vitamínica, imediatamente após o AVC. No primeiro estudo, analisaram a suplementação de vitaminas do complexo B dividindo os participantes em dois grupos. Ao primeiro forneceram um suplemento diário, durante 14 dias, com 5 mg de folato, 5 mg de vitamina B2, 50 mg de vitamina B6
e 0.4 mg de vitamina B12. O segundo grupo não recebeu o suplemento. Verificaram que o grupo suplementado apresentava maior capacidade antioxidante total e anti-inflamatória, independente do efeito diminuidor da homocisteína (77).

Num segundo estudo, o suplemento utilizado apresentava 800 UI de alfa-tocoferol e 500 mg de vitamina C. Verificaram, do mesmo modo, um aumento significativo da capacidade antioxidante total, no grupo de intervenção, comparativamente ao controlo (P<0.003). Concluíram que a suplementação com vitaminas antioxidantes nas 12h após o AVC isquémico agudo aumenta a capacidade antioxidante, reduz a peroxidação lipídica e pode ter um efeito anti-inflamatório (79).

Num terceiro estudo avaliaram a suplementação com vitaminas antioxidantes como utilizado no estudo anterior e vitaminas do complexo B, semelhante ao primeiro estudo. Formaram 4 grupos de estudo: (1) suplementado apenas com vitaminas antioxidantes, (2) suplementado apenas com vitaminas do complexo B, (3) suplementado com ambos os grupos de vitaminas e (4) não suplementado. Concluíram que a suplementação com ou sem vitaminas do complexo B melhora a capacidade antioxidante, diminui o dano oxidativo e pode ter efeito anti-inflamatório, imediatamente após AVC (80).
Análise Crítica

A investigação realizada na área da Nutrição tem revelado que esta desempenha um papel preponderante na terapêutica do doente, contrariando a visão marginal a que era considerada.

Os estudos têm demonstrado, que após o AVC é importante definir a abordagem nutricional adequada, uma vez que esta influencia decisivamente a evolução e prognóstico da doença.

A alimentação por via oral é referida em todos os estudos e recomendações como a mais desejável. A elevada prevalência de disfagia nos doentes após o AVC requer a utilização de dietas com textura modificada e fluidos espessados. Embora este seja um procedimento clínico comum, pode tornar-se subjectivo devido à diversidade de classificações deste tipo de dietas, sendo de grande utilidade estabelecer definições universalmente aceites para a uniformização da terapia nutricional instituída a estes doentes. Contudo, a alimentação por via oral nem sempre é adequada, pelo que o suporte nutricional é frequentemente necessário, para evitar a desnutrição do doente. A este respeito, o FOOD Trial, o maior estudo realizado sobre a alimentação após o AVC, apresenta novos resultados, nomeadamente no que se refere ao momento e via de administração da alimentação entérica, que devem ser devidamente avaliados e refutados. Em geral, as recomendações indicam a utilização preferencial de SNG nas primeiras 4 semanas e, quando necessário prolongar a alimentação entérica por sonda, inserir a PEG. Os estudos sobre as vantagens/desvantagens de cada um dos métodos têm aumentado. Porém, os resultados não são consensuais, pelo que se
impõe a realização de mais estudos para uniformizar práticas e prestar o melhor cuidado ao doente.

Relativamente à suplementação alimentar, os estudos indicam que esta deverá ser considerada na avaliação individual do doente e utilizada apenas em casos particulares (desnutrição, deficiências nutricionais específicas) e não como uma prática clínica de rotina.

As opções terapêuticas nutricionais deverão ter sempre como primeiro objectivo contribuir para a recuperação e reabilitação do doente, mantendo ou, se possível melhorando, a sua qualidade de vida.
Conclusão

“A doença vascular cerebral constitui a primeira causa isolada de mortalidade em Portugal sendo igualmente a principal causa de morbilidade e de anos potenciais de vida perdidos.” (81)

A prevenção deste tipo de patologia apresenta primordial importância, mas dada a realidade actual, o seu tratamento é imperativo. Deste modo, a investigação na área da Nutrição relacionada com a patologia é fundamental para que se possa tratar o doente dispondo do melhor conhecimento possível.

Importa ainda que esse conhecimento se estenda a todos os profissionais na área da saúde ou que intervêm na alimentação destes doentes para que recebam um tratamento com conhecimento e muito humanismo, promotor da sua reabilitação.

Dos vários estudos citados, a prevalência de obesidade nos doentes após o AVC apenas é avaliada num deles (FOOD Trial). Contudo, a tendência actual demonstra uma incidência acentuada da patologia em idades mais precoces e associada a diagnóstico concomitante de sobrepeso/obesidade. Deste modo, parece-me igualmente importante avaliar em próximos estudos, nomeadamente a nível nacional, o impacto do sobrepeso/obesidade no prognóstico e reabilitação de doentes com AVC.
Referências bibliográficas:

69. Plonk Jr WM. To PEG or not to PEG. Practical Gastroenterology. 2005; 29(7).

